Kalman Filtering with Statistical State Constraints

نویسندگان

  • Tien Li Chia
  • Dan Simon
  • Howard Jay Chizeck
چکیده

For linear dynamic systems with white process and measurement noise, the Kalman ̄lter is known to be the minimum variance linear state estimator. In the case that the random quantities are Gaussian, then the Kalman ̄lter is the minimim variance state estimator. However, in the application of Kalman ̄lters known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not ̄t easily into the structure of the optimal ̄lter. Previous work by the authors demonstrated an analytic method of incorporating deterministic state equality constraints in the Kalman ̄lter. This paper extends that work to develop the properties of Kalman ̄lters in the presence of statistical state constraints. That is, given a linear system such that the expected values of the state variables satisfy some linear equality, we can constrain the Kalman ̄lter estimates to sat-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)

In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

Kalman Filtering with State Constraints: A Survey of Linear and Nonlinear Algorithms

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications in...

متن کامل

Constrained Kalman filtering via density function truncation for turbofan engine health estimation

Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This...

متن کامل

Kalman Filtering with State Equality Constraints

For linear dynamic systems with white process and measurement noise, the Kalman filter is known to be an optimal estimator. In the application of Kalman filters there is often known model or signal information that is either ignored or dealt with heuristically [1]. This work presents a way to generalize the Kalman filter in such a way that known relations among the state variables (i.e., state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Control and Intelligent Systems

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006